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We add a defect line of dissipation, or crack, to the Abelian sandpile model. We find that the defect line
renormalizes to separate the two-dimensional plane into two half planes with open boundary conditions. We
also show that varying the amount of dissipation at a boundary of the Abelian sandpile model does not affect
the universality class of the boundary condition. We demonstrate that a universal coefficient associated with
height probabilities near the defect can be used to classify boundary conditions.
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I. INTRODUCTION

The Abelian sandpile model(ASM) was introduced by
Bak, Tang, and Wiesenfeld as a model of self-organized criti-
cality [1]. This well-known model was designed to demon-
strate how simple rules can drive a system to a critical point,
and thus produce power laws, without any fine tuning of
parameters. It has thus been used to explain power laws in a
wide range of systems—see Refs.[2,3] for a review. Since
the ASM was first introduced, a number of variations on the
model have been introduced—see Ref.[4] for a review.
However, the original ASM still provides a simple, impor-
tant, and robust model for the generation of power laws.

The ASM is defined on a square lattice. Each sitea of the
lattice has a height variable,ha, which can be any integer
from 1 to 4, inclusive, whereha represents the number of
grains of sand at that site. At each time step, a grain of sand
is added to a random site of the lattice. After the addition of
the grain, any site with more than four grains of sand is
unstable, and collapses, losing four grains of sand, while
each of its four neighbors gains one grain of sand. Unstable
sites are repeatedly collapsed, until every site is stable—i.e.,
no site has more than four grains. Then, the next time step,
another grain is added, and the entire process is repeated.

The original ASM is spatially homogenous(except for the
boundaries, which break translational invariance), and most
modifications of the sandpile model have kept this feature.
However, here we consider the effects of a crack, represented
by a defect line, along which grains of sand can be lost; in
other words, along which the number of grains is not con-
served. In previous studies, dissipation was added to the bulk
of the ASM (not breaking translational invariance), and was
shown to take the ASM off its critical point[5–7]. Our defect
line of dissipation breaks translational invariance, and we
show that it causes the two-dimensional plane of the ASM to
renormalize into two half planes with open boundary condi-
tions. This shows that cracks in the ASM are highly relevant,
and essentially cleave the sandpile into separate pieces. We
demonstrate this by looking at the universal coefficient asso-
ciated with the modification of unit height probabilities at
large distances from the defect, and at the correlation func-

tion between unit height variables on opposite sides of the
defect. The Green function for an ASM with a defect line is
calculated in Sec. III, and results for the height probabilities
and correlations are presented in Sec. IV.

For most models of interest in condensed matter physics,
the bulk properties can be studied with the boundary playing
little or no role. For example, the two-dimensional Ising
model is often studied on a torus, so as to eliminate boundary
effects. However, this is not possible for the ASM. In the
bulk of the ASM, the number of grains of sand is conserved
during each toppling. If this was true for all sites, then even-
tually we would reach a state where topplings continued
without end. The ASM thus needs sites with dissipation—
that is, sites where the number of grains is not conserved.
The most natural way to do this is with open boundary con-
ditions; sites at the open boundaries become unstable when
they have more then four grains(just as in the bulk), but
have only three neighbors to send grains to, and send the
fourth grain “off the edge,” removing it from the system.
Since this dissipation is necessary for a well-defined sand-
pile, the boundary plays a crucial role in the ASM, even
when we are focused at points in the bulk. Correlation func-
tions far from the boundary are independent of the boundary
conditions, just as in other condensed matter statistical me-
chanical models; but the presence of dissipation somewhere
in the ASM (e.g., at the open boundary) is necessary for the
model to be well defined.

We consider the effects of varying amounts of dissipation
along a boundary, and show that any amount of dissipation at
the edge results in the open boundary universality class. The
Green function is calculated in Sec. V, and results for the
height probabilities and correlations are presented in Sec. VI.

These results are intuitively reasonable, since dissipation
should be relevant in regions of the ASM where the particles
have no other way to leave the ASM. However, it was also
possible that such modifications could have resulted in new,
as yet undiscovered, boundary conditions or defect states.
For example, Bariev, and McCoy and Perk, added a line
defect of modified bond strengths to the Ising model, and
found that they were able to continuously vary the dimension
of the spin operator along the defect by varying the defect
bond strength[8,9]. This continual variation occurred despite
the fact that the Ising model only has three conformally in-
variant boundary conditions.

The ASM has been associated with a conformal field
theory (CFT). While CFT’s are generally well understood,*Electronic address: mjeng@siue.edu
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the ASM is a logarithmic CFT(LCFT) (specifically, thec
=−2 CFT), many aspects of which are still not well under-
stood[10]. In particular, our understanding of the boundary
states of LCFT’s is still fragmentary, and recent results on
boundaries of thec=−2 CFT have been partially contradic-
tory [11–15]. Connections between the LCFT boundary
states, and the ASM boundary states were made in Ref.[16],
but the ASM representation of some of thec=−2 LCFT
boundary states is still unknown. Modifications to the ASM
such as those described in this paper, and searches for other
boundary conditions, could help eludicate these relation-
ships. Our results provide some evidence that the open and
closed boundary conditions are the only possibilities for the
ASM, although it is still possible that further calculations in
this vein could uncover new boundary conditions.

The identification of boundary states as closed, or open,
or in some new, as yet undiscovered class, uses arguments
from CFT that the coefficients associated with the falloff of
expectation values(height probabilities) at large distances
from the defect should be universal. Our results both use this
expected universality, and confirm it, since we find, for ex-
ample, that the coefficient is unaffected by varying a free
parameter corresponding to the amount of dissipation at the
boundary. This confirmation, while expected, is valuable,
given the anomalous and unsettled nature of boundary LCFT
associated with the ASM. This is a particularly important
point in light of recent arguments that use this universality to
argue that the four height variables in the ASM must corre-
spond with different fields in the corresponding CFT[17].

II. THE FORMALISM

Dhar pointed out that ASM is highly analytically tractable
because of its Abelian nature—the same state results whether
grains of sand are added first at sitea and then at siteb, or
first at siteb and then at sitea [18]. This is the basis of a
well-established formalism for analyzing the ASM—see Ref.
[19] for a review. We only give a quick coverage of the
essential points here.

It is useful to first generalize the above description of the
ASM, to allow for more complicated topplings. The dynam-
ics of the model are described by a toppling matrixDab
wherea andb label sites of the lattice. The dimension ofD
is equal to the number of sites in the lattice, soD becomes
infinite dimensional as the size of the lattice goes to infinity.
We say that sitea is unstable if its heightha is greater than
Daa. If site a is unstable, then every height changes byhb
→hb−Dab (including at the siteb=a). We have the standard
ASM, with open boundary conditions, ifDab is 4 whena
=b, −1 whena andb are nearest neighbors, and 0 otherwise.

Dhar showed that the states of any sandpile, given certain
general conditions on the form ofD, are divided into tran-
sient states, which occur with probability zero after long
amounts of time, and recurrent states, which all occur with
equal probability after long amounts of time. The number of
possible recurrent configurations is given by detsDd [18].

Furthermore, Majumdar and Dhar also showed how to
find the probability for a site to have height 1, and the joint
probability for two sites to both have height 1(as well as

other, more complicated probabilities) [20,21]. The toppling
matrix is modified by removing specific bonds, and changing
the toppling condition at certain sites. For example, if we
want to force sitea to have height 1, we change the toppling
matrix so thatDaa=1, and remove three of the bonds to
neighboring sites(settingDab=Dba=0 for those bonds). With
this modified toppling matrixD8 site a is now guaranteed to
have height 1, and detsD8d gives the number of recurrent
configurations withha=1. While D and D8 are infinite-
dimensional matrices(for an infinite lattice), B;D8−D is 0
outside of a 434 submatrix. So detsD8d /detsDd=dets1
+BD−1d is an easily computable 434 matrix determinant,
which gives the probability that, in a randomly chosen recur-
rent configuration, the sitea will have height 1. The same
process, with a differents838d matrix B, can be used to find
two-point correlations of height 1 variables.

This process requires us to calculate the Green function
G;D−1. The Green function has long been known for the
standard ASM, whereD is simply the lattice Laplacian[22].
However, in the following sections we will be dealing with
different toppling conditions, and so will need to calculate
the Green function for these newD’s.

III. GREEN FUNCTION FOR THE DEFECT LINE

We introduce a defect line(or crack) through the middle
of the ASM, allowing dissipation to take place along the
defect, and not just along the open boundary conditions. We
take the lattice to be sizeM 3 s2L−1d, with thex dimension
taking on the valuesi =0,1, . . . ,sM −1d, and they dimension
taking on the valuesj =−sL−1d ,−sL−2d , . . . ,sL−2d ,sL−1d.
We take open boundary conditions along all edges, and put
the defect along the linej =0. Along this line, the height
variable can take on the values1,2, . . . ,s4+md, wherem.0.
A site along the defect topples if its height is greater than
s4+md. When it topples, it sends one grain to each of its four
neighbors, andm grains of sand are dissipated(i.e., disappear
from the sandpile).

Whenm is a positive integer, the theory has its most ob-
vious physical interpretation, but the theory can be modified
to give a sensible interpretation for any rational, positive,
value ofm [5]. If in each toppling,c1 grains are toppled, and
c2 grains sent to each neighbor, wherec1 andc2 are integers,
then the ratio of grains dissipated to grains moved
m/4↔ fc1/ s4c2dg−1 can be any rational integer.

The toppling matrixD is the same as for the standard
ASM, except thatDaa=4+m for sites a along the defect.
Whenm=0 it becomes the standard ASM. The toppling ma-
trix can be written as

Dsi,jd,si8,j8d = dii8D j j 8
s2d + d j j 8Dii8

s1d, s1d

with

Dii8
s1d ; 5 2 if i = i8

− 1 if i = i8 ± 1

0 otherwise,

s2d
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D j j 8
s2d ; 5

2 if j = j8 Þ 0

m + 2 if j = j8 = 0

− 1 if j = j8 ± 1

0 otherwise.

s3d

SinceD is Hermitian, if we find all of its normalized eigen-
vectors, we can easily invert it. Suppose that the eigenvectors
of D are epW ,xW, with eigenvalueslpW. pW and xW are two-
dimensional vectors and the number of possible values ofpW
is equal to the dimension ofD, which is in turn equal to the
number of sites in the lattice. Then

GxW,yW = DxW,yW
−1 s4d

=o
pW

1

lpW
epW ,xWepW ,yW . s5d

The form ofD in Eq. s1d implies that the eigenvectors ofD
factorize into eigenvectors ofDs1d andDs2d.

We thus want the eigenvectors ofDs2d. (The eigenvectors
of Ds1d are not only simpler, but immediately follow from the
eigenvectors ofDs2d, by settingm=0.) j and j8 range from
−sL−1d to sL−1d, soDs2d has 2L−1 eigenvectors. The eigen-
vectors fall in three classes. There aresL−1d oscillatory
eigenvectors that are antisymmetric aboutj =0, and have mo-
mentap evenly spaced between 0 andp [p=np /L, nPZ,
1ønø sL−1d]. There are anothersL−1d oscillatory eigen-
vectors that are symmetric aboutj =0, and have momentap
in the range 0,p,p, where thep solve a transcendental
equation; in the limitL→` these momentap also become
equally spaced between 0 andp. Finally, there is one expo-
nentially decaying eigenvector, symmetric aboutj =0.

SinceD is Hermitian, we can immediately obtain its in-
verse from these eigenvectors. The sums over the two oscil-
latory sets of eigenvectors each produce integrals in the limit
L→`, M→`, using the Euler-MacLaurin formula. The last,
exponentially decaying, eigenvector produces a single, dis-
crete contribution to the Green function. Writing the Green
function as a sum of the contributions from the three classes
of eigenvectors gives

Gsi, j ,i8, j8d = o
a=1

3

Gsadsi, j ,i8, j8d, s6d

Gs1dsi, j ,i8, j8d = 1
2G0si − i8, j − j8d − 1

2G0si − i8, j + j8d, s7d

Gs2dsi, j ,i8, j8d = 1
2G0si − i8,u j u − u j8ud + dGs2dsi − i8,u j u + u j8ud,

s8d

Gs3dsi, j ,i8, j8d =
s− 1d j+j8

2Îk2 − 1

m
Îm2 + 4

sK − ÎK2 − 1dui−i8u

3S−
m

2
−

Îm2 + 4

2
D−su j u+u j8ud

, s9d

where we have defined

K ; 2 + 1
2
Îm2 + 4. s10d

G0 is the well-known bulk Green functionf22g

G0si, jd ; E
0

2p dpi

2p
E

0

2p dpj

2p

cosspiidcosspj jd − 1

4 − 2 cospi − 2 cospj
.

s11d

We have also defined

dGs2dsi, jd ; S1 −
m2

2
DGs2adsi, jd + mfGs2adsi, j − 1d

− Gs2adsi, j + 1dg −
1

2
fGs2adsi, j − 2d

+ Gs2adsi, j + 2dg + cm, s12d

Gs2adsi, jd ; E
0

2p dpi

2p
E

0

2p dpj

2p

cosspiidcosspj jd − 1

4 − 2 cospi − 2 cospj

3
1

m2 + 4 sin2pj
, s13d

cm ; E
0

2p dpi

2p
E

0

2p dpj

2p

1

2 − cospi − cospj

sin2 pj

m2 + 4 sin2 pj
.

s14d

We want the behavior ofGsi , j , i , j8d for u j u+ u j8u large. The
expansion of the bulk Green functionG0s0, jd for large j is
well known f22g:

G0s0,jd → −
1

2p
lns jd −

1

p
Sg

2
+

3

4
ln 2D +

1

24p j2
+ ¯ ,

s15d

where g=0.577. . . is theEuler-Mascheroni constant. We
also need the behavior ofdGs2ads0, jd for j large. The in-
tegral overpj in Eq. s13d can be done exactly, and making
the substitutionz=eipi gives a contour integral around the
unit circle. The integrand has two poles inside the unit
circle, but these give contributions which either decay ex-
ponentially with j , or are independent ofj , neither of
which affects our height calculations; so these contribu-
tions can be dropped. The algebraicj dependence comes
from the branch cut in the integrand, running fromz=3
−Î8 to z=3+Î8, which gives

Gs2ads0,jd → 1

p
PE

3−Î8

1

dz
zj − 1

z− 1
fszd, s16d

fszd ;
1

Î− z2 + 6z− 1
S z2

sz2 − 1d2 − m2z2D , s17d

whereP indicates that we take the principal part of the inte-
gral. We can use this to find the behavior ofGs2ads0, jd for
large j , by separating out the contributions fromz near 1, and
expanding in a Laurent series inj . This then gives the ex-
pansion ofdGs2ds0, jd,
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dGs2ds0,jd =
1

4p
ln j +

1

mp j
+

m2 − 96

48pm2j2
+ ¯ , s18d

dropping terms independent ofj .

IV. HEIGHT PROBABILITIES FOR THE DEFECT LINE

Now that we have the Green function for the defect line,
we can use it to calculate the height correlations, using the
methods outlined in Sec. II. We find that the probability for a
site a distancej from the defect to have height 1 is

Probshsi,jd = 1d =
2sp − 2d

p3 S1 +
1

4j2
−

1

2mj3
+ ¯D . s19d

The constant term 2sp−2d /p3 is the bulk probability for a
site to have height 1, first calculated in Ref.f20g. It was also
found in Ref.f20g that the correlation function between two
height 1 operators is

Probshsi1,j1d = hsi2,j2d = 1d = S2sp − 2d
p3 D2S1 −

1

2r4 + ¯D ,

s20d

where

r ; Îsi1 − i2d2 + s j1 − j2d2. s21d

Thus, the height 1 operator is a dimension 2 operator. Based
on the identification of the ASM as a conformal field theory
f21,23g, the coefficient of 1/j2, in expectation values of di-
mension 2 operators a distancej from a boundary, is ex-
pected to be a universal number characteristic of the bound-
ary conditionf24g. And, in fact, this coefficient of +1/4 in
Eq. s19d is exactly the coefficient seen for the height 1 prob-
ability at large distances from an open boundary condition,
as shown by Brankov, Ivashkevich, and Priezzhevf25g. This
indicates that, upon renormalization, the defect line becomes
an open boundary.

It is only sensible to talk about conventional boundary
conditions at the defect line, if the two half planes on either
side of the defect have somehow been separated. Evidence
that the defect renormalizes to separate the half planes can be
seen by looking at correlation functions of points on opposite
sides of the defect. If, upon renormalizing the defect, the two
sides of the defect were still “connected,” we would expect
that height variables on opposite sides would still fall off as
1/r4, since the height 1 operator has dimension 2.(Calcula-
tions of correlation functions along boundaries by Ivash-
kevich have shown that the height one operator also has di-
mension 2 along open boundaries[26].) However, we find
that

Probshsi,jd = 1,hsi,−jd = 1d − Probshsi,jd = 1dProbshsi,−jd = 1d

= S2sp − 2d
p3 D2F−

1

8m2j6
+ OS 1

j7
DG . s22d

While the height variable is a dimension 2 operator, its cor-
relations across the defect fall off as 1/r6. The coefficient of
the 1/r4 term renormalizes to zero, and the 1/r6 term is

nonuniversal, depending continuously onm. We thus con-
clude that the defect renormalizes to generate two separate
half planes with open boundary conditions.

This is physically reasonable. Adding dissipation through-
out the bulk of the ASM is known to be relevant, driving the
system off criticality[5–7]. More recently, adding dissipation
in the bulk was identified with adding the integral of a di-
mension 0 variable(the logarithmic partner of the identity)
throughout the bulk[23]. It would thus appear that the local
addition of dissipation should be represented by a dimension
0 operator, which would mean that adding dissipation along
a defect line should be relevant, as we have found here. In
short, cracks in the ASM cleave the plane into disconnected
regions with open boundary conditions. Similar separation
with relevant perturbations along a defect occurs in other
models—see, for example, Ref.[27]. However, these results
were not inevitable; as already noted, line defects added by
Bariev, and McCoy and Perk, to the Ising model, resulted in
a continual range of defect lines, along which the dimension
of the spin operator could be continuously varied, despite the
fact that the Ising model only has three possible boundary
conditions.

V. GREEN FUNCTION FOR THE MODIFIED
BOUNDARY CONDITIONS

The identification of a line of dissipation with open
boundary conditions brings up the question of whether any
other universality classes of boundary conditions with dissi-
pation are even possible. The open and closed boundary con-
ditions are the most natural to impose on the ASM, but other
boundary conditions than these two conventional ones can be
written down. We create new boundary conditions by vary-
ing the amount of dissipation along the boundary, and show
that, regardless of the amount of dissipation, we stay in the
open boundary universality class(so long as the amount of
dissipation is nonzero—that is, so long as the boundary is not
closed).

It is convenient to change the dimensions of the lattice
from those of Sec. III. We take the lattice to be of sizeM
3L, with the x dimension taking on the valuesi
=0,1, . . . ,sM −1d, and they dimension taking on the values
j =0,1, . . . ,sL−1d. We impose a modified boundary condi-
tion along j =0, and open boundary conditions on the other
three edges.(In the end, we take the limitsL→` and M
→`, so our results should anyway be insensitive to the
boundary conditions on these three edges.)

We allow the height variable on the boundaryj =0 to take
on values1,2, . . . ,b. Sites on the boundary become unstable
when their height is greater thanb, at which point they
topple, giving one grain to each of their three neighbors, and
droppingb−3 grains off the edge. Forb=3 this is the closed
boundary condition, and forb=4 this is the open boundary
condition. Forb,3, sand is generated with each toppling,
rather than dissipated, creating the possibility of never-
ending cycles of toppling. We therefore only considerb.3.
The system can be given a sensible interpretation for any
rational value ofbù3 [5]. The toppling matrix between sites
si , jd and si8 , j8d can be written as
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Dsi,jd,si8,j8d = dii8D j j 8
s3d + d j j 8Dii8

s1d, s23d

whereDs1d was defined in Eq.s2d, and

D j j 8
s3d ; 5

2 if j = j 8 Þ 0

b − 2 if j = j 8 = 0

− 1 if j = j 8 ± 1

0 otherwise.

s24d

As with the defect, if we can find all the eigenvectors ofD,
we can easily invert it.Ds3d, being L dimensional, hasL
eigenvectors. When 3,b,5, Ds3d has L eigenvectors that
are oscillatory functions ofj , with momentap, which satisfy
a transcendental equation. In the limitL→`, the momenta
are evenly spaced over the range 0,p,p. Whenb.5, Ds3d

only hassL−1d such oscillatory eigenvectors, and one last
eigenvector that is exponentially decaying inj .

In the Green function, the summation over oscillatory
eigenvectors can be turned into an integral in the limit
L→`, M→`, with the Euler-MacLaurin formula. Forb.5,
the single, exponentially decaying eigenvector produces a
separate, discrete contribution to the Green function. The
Green function is then given by

Gsi, j ,i8, j8d = G̃si, j ,i8, j8d + usb − 5dGexpsi, j ,i8, j8d,

s25d

where

G̃si, j ,i8, j8d ; E
0

2p dpi

2p
E

0

2p dpj

2p

cosfpisi − i8dg
2 − cospi − cospj

3
1

sb − 4d2 + 1 + 2sb − 4dcospj

3hsb − 4dsinspj jd + sinfpjs j + 1dgj

3hsb − 4dsinspj j8d + sinfpjs j8 + 1dgj,

s26d

and

Gexpsi, j ,i8, j8d ;
sb − 3dsb − 5d

2Îk2 − 1
s4 − bd−j−j8−2sk − Îk2 − 1dui−i8u.

s27d

We have defined

k ; 1 +
sb − 3d2

2sb − 4d
, s28d

and

usxd ; H1 if x . 0

0 if x ø 0.
s29d

At first sight, this equation for the Green function seems to
indicate thatG has a slope discontinuity atb=5. However,

this is not the case.G̃ is not smooth atb=5, and expandingG̃

as a function ofb nearb=5 shows that the combinationG̃
+usb−5dGexp is actually smooth to all powers ofsb−5d.

Inspection shows thatG is also a smooth function ofb for
all other b in the range 3,b,` sincluding b=4d.

We need the Green function in two limits. First, fori = i8
and j + j8 large, it is useful to write

G̃si, j ,i8, j8d = G0si − i8, j − j8d − G0si − i8, j + j8d

+ dGsi − i8, j + j8d, s30d

dGsi, jd ; E
0

2p dpi

2p
E

0

2p dpj

2p

cosspiid
2 − cospi − cospj

3
sinpj

sb − 4d2 + 1 + 2sb − 4dcospj

3fsinpj cosspj jd + sb − 4 + cospjdsinspj jdg.

s31d

In dGs0, jd, we can do the integral overpi exactly, and then
setz=eipj. As before, the main contribution comes from the
branch cut betweenz=3−Î8 andz=1. Expanding the inte-
gral nearz=1 gives

dGs0,jd <
1

psb − 3d j
−

1

psb − 3d2j2
+

b2 − 8b + 19

2psb − 3d3j3
+ ¯ .

s32d

We also need the expansion of the Green function along the
defect—that is, for j = j8=0 and ui − i8u@0. Using similar
methods as before, we find

G̃sx = ui − i8u, j = j8 = 0d <
1

psb − 3d2x2

−
b2 − 18b + 57

2psb − 4d4x4 + OS 1

x6D . s33d

VI. HEIGHT PROBABILITIES FOR MODIFIED
BOUNDARY CONDITIONS

Using the Green function for modified boundary condi-
tions, we can calculate unit height probabilities with the
methods described in Sec. II. We find that the probability for
a site a distancej from the boundary to have height 1 is

Probshsi,jd = 1d =
2sp − 2d

p3 S1 +
1

4j2
−

1

2sb − 3d
1

j3
+ ¯D .

s34d

As discussed earlier, the coefficient of the 1/j2 term is ex-
pected to be a universal number characteristic of the bound-
ary conditionf24g, and is equal to +1/4 for the open bound-
ary conditionf25g. We see here that the coefficient is +1/4,
and independent ofb for b.3. This both confirms the ex-
pectation that the coefficient should be universal, and indi-
cates that the boundary is in the open boundary universality
class for any amount of dissipationsb.3d.

Note that the coefficient of 1/j3 is nonuniversal, and di-
verges asb→3, indicating thatb=3 is a special point as we
vary b. b=3 corresponds to the closed boundary condition,
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and it is already known that the coefficient of the 1/j2 term is
different s−1/4d for the closed boundary conditions; this is
appropriate, since the closed and open boundary conditions
are clearly in different universality classes[25].

Boundary correlations along thej =0 boundary can be cal-
culated, and contain no surprises. The correlation function
between sitessi ,0d and si8 ,0d falls off as 1/ui − i8u4 for all
values ofb:

Probshsi,0d = 1,hsi8,0d = 1d − Probshsi,0d = 1dProbshsi8,0d = 1d

= − S s1 − c0 + c2ds− 1 + 3c0 − 4c1 + c2d
sb − 3dp D2 1

ui − i8u4

+ OS 1

ui − i8u6
D . s35d

We have defined cx;Gsx= ui − i8u , j = j8=0d. Equations
s25d–s27d can be used to find analytic expressions forcx, for
x=0,1,2.However, the expressions are long and not particu-
larly enlightening, so are not presented here. Thesabsolute
value of thed coefficient of the 1/ui − i8u4 term is plotted in
Fig. 1. It falls off smoothly with increasingb.

The coefficient of 1/ui − i8u4 in Eq. (35) diverges asb ap-
proaches 3, reflecting the fact thatb=3 is a fixed point of the
renormalization group(RG) flows, leading to nonsmooth be-
havior in physical properties. However, the Green function,
and height correlations calculated from it, are perfectly
smooth as we varyb through 4. It would appear that the RG
flows take us fromb=3 to b=`, and thatb=4 is not a fixed
point of the RG flows. However,b=` is in a sense the same
asb=4, in that both equally well represent the open bound-
ary condition; if b=`, the sites j =0 can hold an infinite

number of grains, and never topple—the sandpile thus acts
as if j =1 was the boundary, with an open boundary condi-
tion, where grains fall “off the edge” toj =0.

We have shown that the addition of dissipation along a
defect line separates the ASM into two half planes, each with
open boundary conditions. This brought up the question of
whether there are other universality classes of boundary con-
ditions, with varying amounts of dissipation along the
boundary. We find that any amount of dissipation along a
boundary results in the open boundary universality class at
large distances. Classes of boundary conditions were identi-
fied by the universal coefficient of the unit height probability,
far from the boundary or defect.
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